Agile Insider Blog

Learn IPv6 with this Microsoft Step by Step Lab Guide

Create a test lab to demonstrate IPv6 connectivity with a simulated multi-subnet intranet and IPv4 Internet.

Intro to IPv6

The current version of IP (known as Version 4 or IPv4) has not been substantially changed since Request for Comments (RFC) 791 was published in 1981. IPv4 has proven to be robust, easily implemented and interoperable, and has stood the test of scaling an internetwork to a global utility the size of today’s Internet. However, on today’s Internet, IPv4 has the following disadvantages:

· Limited address space The most visible and urgent problem with using IPv4 on the modern Internet is the depletion of public addresses. This limited address space has forced the wide deployment of network address translators (NATs), which can share one public IPv4 address among several privately addressed computers. NATs have the side effect of acting as a barrier for server, listener, and peer-to-peer applications running on computers that are located behind the NAT. Although there are workarounds for NAT issues, they only add complexity to what should be an end-to-end addressable global network.

· Flat routing infrastructure In the early Internet, address prefixes were not allocated to create a summarizable, hierarchical routing infrastructure. Instead, individual address prefixes were assigned and each address prefix became a new route in the routing tables of the Internet backbone routers.

· Configuration IPv4 must be configured, either manually or through the Dynamic Host Configuration Protocol (DHCP). DHCP allows IPv4 configuration administration to scale to large networks, but you must also configure and manage a DHCP infrastructure.

· Security Security for IPv4 is specified by the use of Internet Protocol security (IPsec). However, IPsec is optional for IPv4 implementations. Because an application cannot rely on IPsec being present to secure traffic, an application might resort to other security standards or a proprietary security scheme. The need for built-in security is even more important today, when we face an increasingly hostile environment on the Internet.

· Prioritized delivery Prioritized packet delivery, such as special handling parameters for low delay and low variance in delay for voice or video traffic, is possible with IPv4. However, it relies on a new interpretation of the IPv4 Type of Service (TOS) field, which is not supported for all the devices on the network. Additionally, identification of the packet flow must be done using an upper layer protocol identifier such as a Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) port. This additional processing of the packet by intermediate routers makes forwarding less efficient.

· Mobility Mobility is a new requirement for Internet-connected devices, in which a node can change its address as it changes its physical attachment to the Internet and still maintain existing connections. Although there is a specification for IPv4 mobility, due to a lack of infrastructure, communications with an IPv4 mobile node are inefficient.

All of these issues and others prompted the Internet Engineering Task Force (IETF) to begin the development of a replacement protocol that would solve the problems of IPv4 and be extensible to solve additional problems in the future. This replacement protocol is IPv6.

IPv6 solves the problems of IPv4 in the following ways:

· Huge address space IPv6 addresses are 128 bits long, creating an address space with 3.4 X 1038possible addresses. This is plenty of address space for the foreseeable future and allows all manner of devices to connect to the Internet without the use of NATs. Address space can also be allocated internationally in a more equitable manner.

· Hierarchical routing infrastructure IPv6 addresses that are reachable on the IPv6 portion of the Internet, known as global addresses, are designed to have a structure that fits the typical global-regional-local hierarchy of Internet service providers (ISPs) that typically exist between an organization or home and the backbone of the Internet. Global addresses are designed to be summarizable and hierarchical, resulting in fewer routing entries in the routing tables of Internet backbone routers.

· Automatic configuration IPv6 hosts can automatically configure their own IPv6 addresses and other configuration parameters, even in the absence of an address configuration infrastructure such as DHCP.

· Required support for IPsec headers Unlike IPv4, IPv6 support for IPsec protocol headers is required. Applications can always rely on industry standard security services for data sent and received. However, the requirement to process IPsec headers does not make IPv6 inherently more secure. IPv6 packets are not required to be protected with AH or ESP.

· Better support for prioritized delivery IPv6 has an equivalent to the IPv4 TOS field that will have a single interpretation for nonstandard delivery. Additionally, a Flow Label field in the IPv6 header indicates the packet flow, making the determination of forwarding for nondefault delivery services more efficient at intermediate routers.

· Support for mobility Rather than attempting to add mobility to an established protocol with an established infrastructure (as with IPv4), IPv6 can support mobility more efficiently.

For more information about IPv6 in Windows, see the IPv6 TechNet web page.

In this guide

This paper contains instructions for setting up a test lab based on the Base Configuration test lab and deploying IPv6 using four server computers and one client computer. The resulting IPv6 test lab demonstrates default and configured IPv6 connectivity across an intranet and a simulated IPv4-only Internet.


Read the rest @> Test Lab Guide: Demonstrate IPv6″>Download [email protected]> Test Lab Guide: Demonstrate IPv6

Leave a comment

Learn More Today

Have questions or want to learn more about the services and solutions Agile IT has to offer?

Schedule a call with us today!

Schedule a Call

Request a Quote